

SUBSURFACE UTILITY ENGINEERING (SUE)

- What is SUE?
- Why SUE is different than One-Call?
- SUE in design
- Cost/benefits
- Deliverables

SUE SPECIFICATIONS

ASCE 38-22 defines Subsurface Utility Engineering (SUE) as a branch of civil engineering that includes the investigation, analysis, judgment, and documentation of existing Utility networks.

QUALITY LEVEL-D

Utility Records Research

- Derived from as-built's & existing utility records
- Provides overall feel for the congestion of utilities
- Limited in terms of accuracy and comprehensiveness
- Useful in planning and route selection
- Lowest level of accuracy
- Highest degree of risk

QUALITY LEVEL-C

Surface Evident Utility Appurtenance Survey

- Survey of visible above-ground utility features / appurtenances i.e. manholes, valve boxes, water valves, fire hydrants
- Correlates available utility records to surveyed features
- Identifies discrepancies between utility records & surveyed features for further investigation
- Moderate degree of risk

QUALITY LEVEL-B

Utility Designation, Survey, & Mapping

- Horizontal location of Utility is designated, surveyed
 & mapped
- Electronic (approximate) depth information
- QL-B Data used to rectify QL-C/D efforts
- Allows designers to adjust early in design process to avoid conflicts with existing utilities
- Most used
- Lower degree of risk

QUALITY LEVEL-B: METHODS

Primary method is electromagnetic location

QUALITY LEVEL-B: METHODS

Ground penetrating radar

QUALITY LEVEL-B: METHODS

Ground penetrating radar

QUALITY LEVEL-B: LIMITATIONS

- Water
 - Lines often not conductive
- Tracer wires
 - May not be present/intact

QUALITY LEVEL-A

Utility Test Hole Excavation

- Vacuum excavation methods provide nondestructive exposure of any utilities in question
- Provides precise horizontal and vertical location for plan and profile mapping
- Documents size, material composition, and condition of the facility
- Lowest degree of risk
- Highest level of accuracy

WHY IS SUE DIFFERENT THAN ONE-CALL?

ONE-CALL

- Not a professional service
 - Limited training & oversight
 - Marks placed by low-bid contractor
- Only member utilities respond
- Loose tolerances

SUE

- Professional services
 - P.E. oversight
 - Incentivized to provide best product
- All utilities located
 - Private utilities included
 - Can search for unknowns
- Tighter tolerances
- Marks surveyed

DAMAGE PREVENTION

- Orlando, FL April 12, 2016
- Construction crew rips through 30-in waterline
- 50 customers affected
- Everyone at all 14 downtown Orange County facilities — including judges, lawyers and felons at the courthouse — to stop drinking tap water

DAMAGE PREVENTION: CLOSER TO HOME

- Street & Sidewalk improvements in front of the former Vanessa House Brewery in OKC
- OKC instructed designers to use their record information for water lines known to be approx 4 ft. deep
- Water lines encountered closer to 4 in. deep during excavation, just below sidewalk
- Project delayed during redesign process
- VHB sued OKC for lost income due to delay, CEC participated
- Actually a very small lawsuit, but 2 test holes could have been dug to verify line for <10% of the settlement

HOW TO BEST UTILIZE SUE

- Preliminary design
 - Route studies
 - Planning
- PS&E design
 - 30 60 90
- Information to avoid utilities & revise design

HOW TO BEST UTILIZE SUE

Reducing Costs

- Only perform SUE at critical locations
- Utilize QL D/QL C for route evaluation
- Use test holes to investigate conflict points

COST / BENEFIT

- 1999 study performed at Purdue University for FHWA
 - Studied 71 projects of various types across 4 states
- Cost savings is historically 5x the cost to perform SUE services
- Cost savings greater today?
- Think like a program manager, not a project manager

QLB DELIVERABLES

QLB DELIVERABLES

QLA DELIVERABLES

EMERGING TECHNOLOGY

TECHNOLOGY OVERVIEW – INERTIAL MEASURING UNIT

- IMUs measures angular acceleration/rate of change in position of an object, relative to a local inertial reference frame
- IMUs determine an object's orientation within 3D space about three axes:
 - Pitch (X-axis),
 - Roll (Y-axis),
 - Yaw (Z-axis)
- Ultra-high accurate and precision IMUs provide low drift and low bias instability

* IMUs with sampling rate 1000 Hz (1 kHz) provides a higher resolution for detecting rapid changes in motion

4/3/2024

3

EMERGING TECHNOLOGY

IMU GYRO MAPPING - BENEFITS

- Any Pipeline Material
- Metallic
- Non-Metallic

Telecom & Fiber Ducts

Natural Gas & Oil
Pipelines

Sewer & Drain Segments

Drinking Water
Main lines

Any Utility

Underground
 Utilities (All)

- Any Depth
- 100' & below
- River Crossings

No Tracing Required

- No Electromagnetic Noise
- · No Traffic Disruptions
- No Satellite reception
- · No Impact of Soli Conditions

High Frequency Data

- High Sample Rate
- · Autonomous Tool

4/3/2024

9

Aaron Finley, P.E.
SUE Department Manager
aaron.finley@connectcec.com
405.753.4200

SUBSURFACE UTILITY